## Respiratory failure and Oxygen Therapy

# AN INTERNATIONAL JOURNAL OF RESPIRATORY MEDICINE

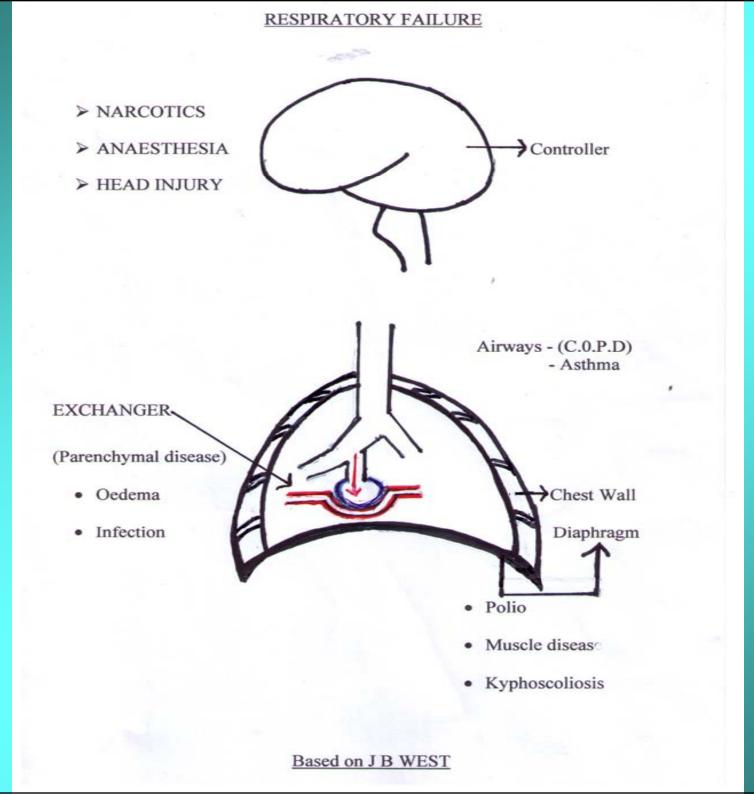
#### Guideline for emergency oxygen use in adult patients

British Thoracic Society Emergency Oxygen Guideline Group

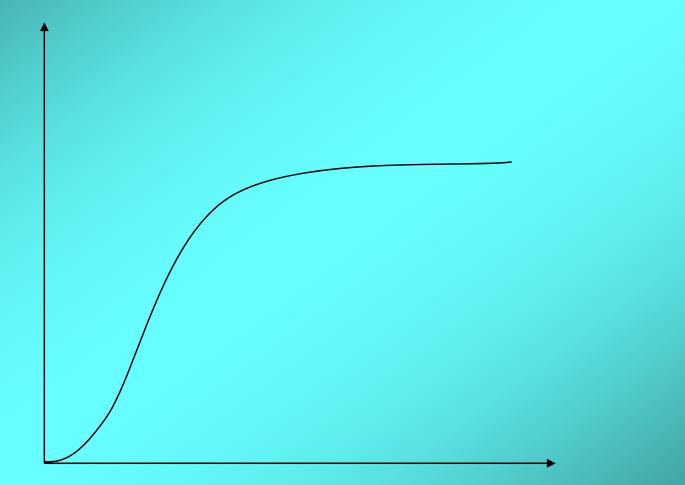
#### thorax.bmj.com



**BMJI** Journals


#### **Respiratory Physiology** *— the essentials* 2nd Edition

John B. West, M.D., Ph.D.




Williams & Wilkins

- A patient with Hb 15 G % will carry 3X more O<sub>2</sub> in his blood than someone with Hb 5G %
- Give Controlled O<sub>2</sub> treatment in acute pulmonary oedema to avoid CO<sub>2</sub> retention
- Exacerbation of COPD is a classical example of type 1 respiratory failure
- 24 28 % FIO<sub>2</sub> should be given in COPD exacerbation
- Oxygen is routinely recommended for AMI patient
- Oxygen is routinely recommended for acute stroke patient



#### O2 dissociation curve



#### Essential pressure concepts

- Partial pressure = % x (total pressure)
- Room Air = 21%
- P(atmos) = 760 mm Hg
- Partial pressure O<sub>2</sub> in room air

 $=760_{x}(21/100)=159 \text{ mm Hg}$ 

#### More pressure concepts

• In airways water vapour Pressure

• Dry gas pressure

=47 mm Hg

- =760 47
- =713 mm Hg
- PO<sub>2</sub> inspired air
- $=713 \times 21\%$
- $P_{I}(O_{2}) = 149 \text{ mm Hg}$

#### Finally!

• Alveolar Gas Equation

 $P_AO_2 = P_IO_2 - (P_ACO_2)/(0.8)$ =149 - 49 =100

#### O2 dissociation curve

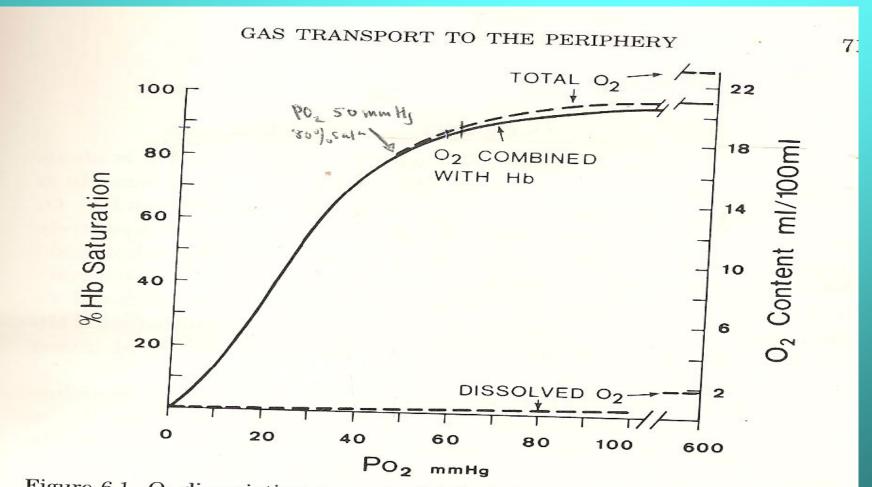



Figure 6.1.  $O_2$  dissociation curve (*solid line*) for pH 7.4,  $P_{CO_2}$  40 mm Hg and 37°C. The total blood  $O_2$  content is also shown for a hemoglobin concentration of 15 gm/100 ml of blood.

#### Haemoglobin and O<sub>2</sub> Carriage

- Dissolved O<sub>2</sub> =0.3ml in 100ml blood
- $1G Hb = 1.4ml O_2$
- 15G Hb = 20ml O2 (un 100 ml blood)
- i.e Hb<sup>†</sup>O<sub>2</sub> carriage X 70-fold

#### Importance of anaemia

- $15 \text{ G Hb} = 20 \text{ml } \text{O}_2$
- $10 \text{ G Hb} = 13.3 \text{ml O}_2$

•  $5G Hb = 6.6ml O_2$ 

#### Hb level and O<sub>2</sub> transport

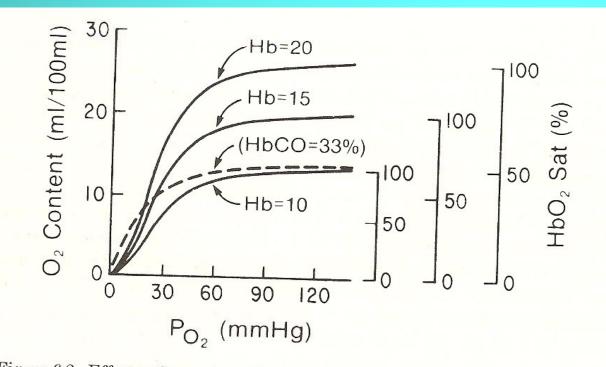
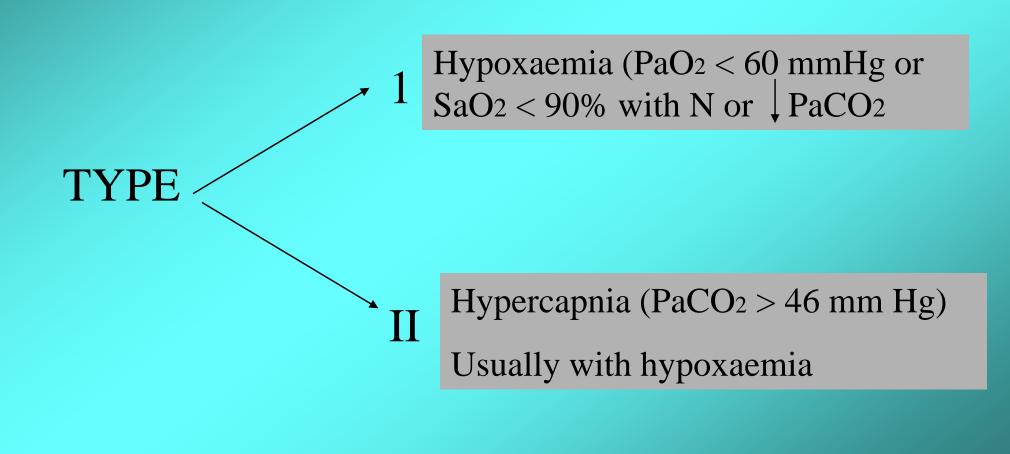




Figure 6.2. Effects of anemia and polycythemia on  $O_2$  content and saturation. In addition, the *broken line* shows the  $O_2$  dissociation curve when one-third of the normal hemoglobin is bound to CO. Note that the curve is shifted to the left.

#### **Respiratory Failure**



## Type I

• Parenchymal disease

• Hypoxic environments



#### • COPD

• Obesity hypoventilation syndrome

• Neuromuscular disease

• Kyphoscoliosis

#### Hypoxaemia assessment - pitfalls

 Detection of cyanosis -fraught with error ie hypoxaemia often missed specially if anaemic – oximetry much better

• Tachypnoea, tachycardia often present but not always so

#### Hypoxaemia assessment- pitfalls

• Confusion, restlessness maybe more prominent especially in the elderly

 respiratory rate is the single best predictor of severe illness- but beware the calm patient hypoventilating from opiates!

#### Assessment of hypoxaemia

- Hx and examination
- Previously healthy or features of COPD
- Other illnesses predisposing to CO<sub>2</sub> retention
- Clinical picture will usually point towards correct diagnosis
- In dire emergencies resuscitate first then go through above steps

#### **Pulse Oximetry**

• Principle : differential absorption of Infrared light by HbO<sub>2</sub> and deoxy Hb

• Accurate at SPO<sub>2</sub>> 88% (cf ABGs)

• THE FIFTH VITAL SIGN







#### Pulse Oximetry-Disadvantages

• Inaccurate when poor perfusion, shock

• Does not measure Hb, pH, PaCO<sub>2</sub>

• Normal reading with COHb and metHb

#### Pulse Oximetry-Disadvantages

- Dark skinned subjects ( overestimates SpO<sub>2</sub>)
- Sickle cell crisis (underestimates)
- Nail varnish, false nails
- Thick fingers

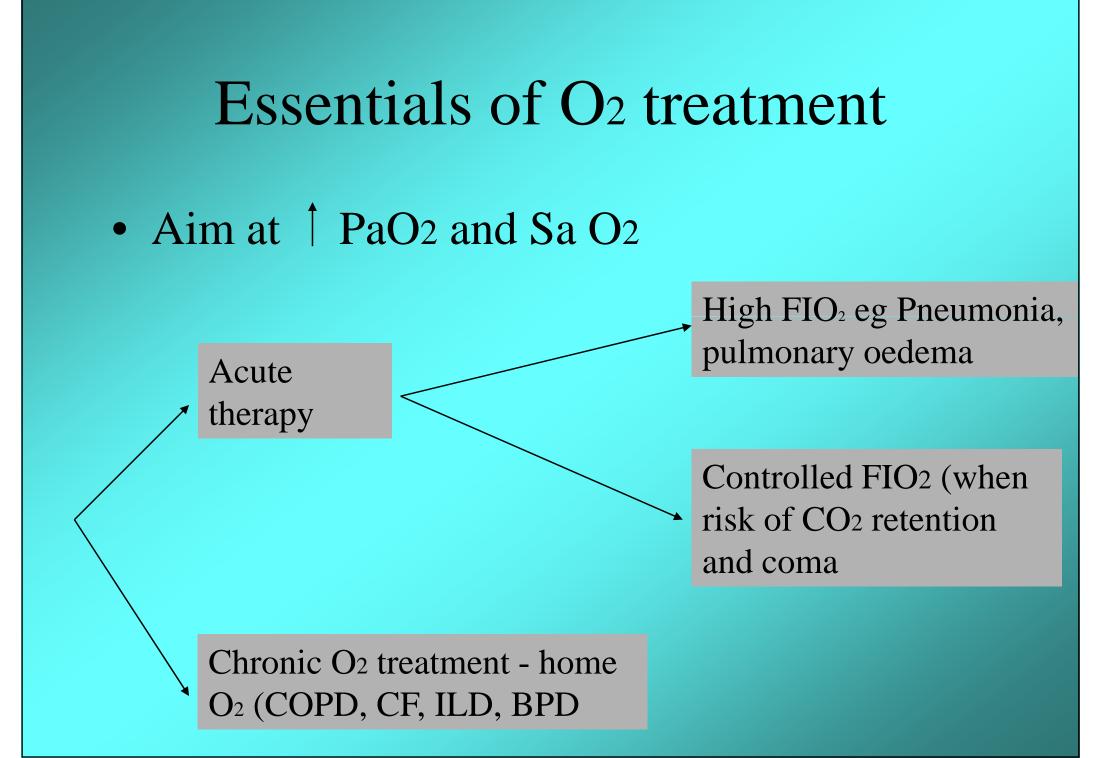
#### Pulse Oximetry

 Does not mean Arterial blood gases should not be done

#### Arterial blood gases: indications

- All critically ill patient
- Unexpected hypoxaemia
- Worsening hypoxaemia
- Any patient at risk of type II respiratory failure who worsens
- Breathless patient who could be metabolic
- Unable to obtain reliable pulse oximetry

#### How to give O<sub>2</sub>


• Set a target

• 94-98% SpO2 in those without hypercapnic risk

• 88-92% when risk of CO<sub>2</sub> retention exists

#### O2 administration

- Administering O2 via most appropriate device
- 24-28% if risk of CO2 retention
- Monitor( pulse oximetry) O2 saturation
- Do ABG after 1hr if risk of retention
- Careful clinical observation



# • Remember – O2 delivery <u>to tissues</u> is what matters

• SaO2 is important

• But so are [Hb] and Cardiac output

#### COPD dx. - pointers

- Age > 50 yrs
- > 10 pack yr smoking
- Chronic cough, Sputum
- Pre existing exertional dyspnoea
- Previous exacerbations

#### O2 - dangers

- CO<sub>2</sub> retention (hypercapnia)
- Respiratory Acidosis (pH decreased)
- Occurs in pathology associated with hypoventilation
- Commonest: COPD
- Also
  - Morbid Obesity
  - Neuromuscular disease
  - Kyphoscoliosis

#### Mechanism of CO<sub>2</sub> retention

• Classically 'loss of hypoxic drive'

 Current favourite – V/Q mismatch (loss of hypoxic vasoconstriction)

# CO2 retention: Symptom and signs

- Headache
- Tremor (flap)
- Confusion
- COMA (PaCO<sub>2</sub> > 90mmHg)
- Flushed
- Bounding pulse

#### Rebound Hypoxaemia

|       | Room Air  | Excess Air | O2 Stopped |
|-------|-----------|------------|------------|
| PaO2  | 6.5 (49)  | 32(240)    | 3.4 (255)  |
| PaCO2 | 7.5 (56)  | 10(75)     | 10(75)     |
| PAO2  | 11.6 (87) |            | 8.5 (64)   |

#### O2 - Dangers

• Paraquat poisoning

• Bleomycin lung injury

### Oxygen- Potentially dangerous

• Post MI (normoxaemic)

• Post Stroke

• Paediatric resuscitation

# Hyperoxaemia - beneficial

- CO poisoning
- Pneumothorax
- 2hr Post-op bowel surgery
- ? Diabetic foot ulcers
- ? Cluster headaches

Oxygen cylinders

• Size C (170 L) G (3400) J(6800)

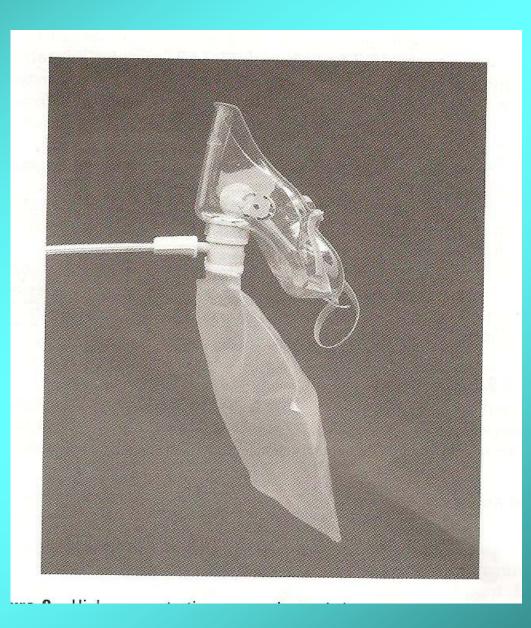
• Black cylinder with white shoulder

• Check label

• Check state of filling






#### • Oxygen Concentration $\rightarrow$ • Air intake

- Filter out non- O<sub>2</sub> gases
- 95-99% pure O<sub>2</sub> out
- Up to 6 Lpm

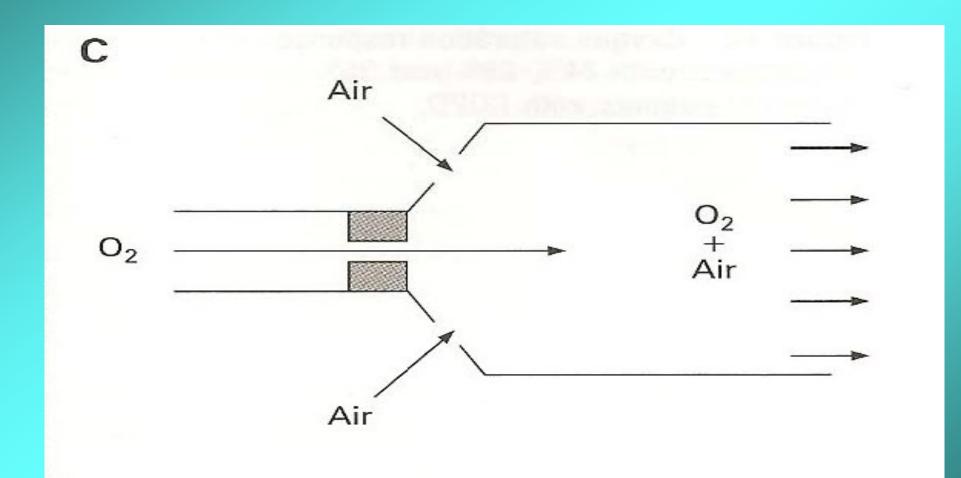
## High FIO<sub>2</sub>

High reservoir mask 60-90% O<sub>2</sub>
 10-15 L/min

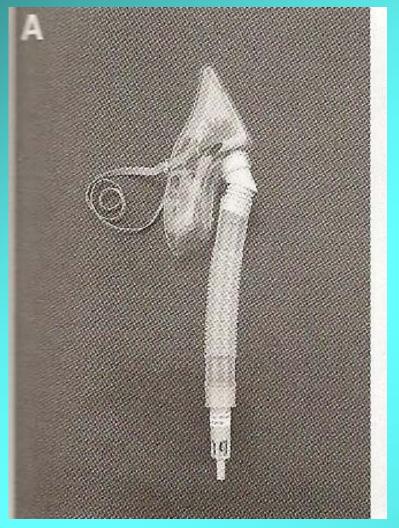
- Major trauma
- ER when no CO<sub>2</sub> retention likely

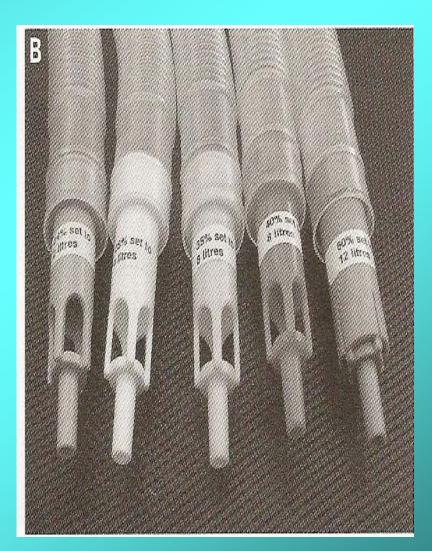


- Simple face mask
  - O2 concentration 40 60%
  - Never use O2 flow < 51/min</p>
    - \* inappropriate for COPD







## Venturi principle


• Gas flowing out from small orifice will lead to a fall in pressure

# Venturi principle



### Venturi masks





| Oxygen flow (l/min) | venturi values |            |            |            |            |
|---------------------|----------------|------------|------------|------------|------------|
|                     | 24% oxygen     | 28% oxygen | 35% oxygen | 40% oxygen | 60% oxygen |
| 15                  | Mar II ANY 8   |            | 84         | 82         | 30         |
| 12                  |                |            | 67         | 50         | 24         |
| 10                  |                |            | 56         | 41         |            |
| 8                   |                | 89         | 46         |            |            |
| 6                   |                | 67         |            |            |            |
| 4                   | 102            | 44         |            |            |            |
| 2                   | 51             |            |            |            |            |

 Table 11
 Total gas flow rate (I/min) from Venturi masks at different oxygen flow rates

Vanturi valuas

Fixed O2 conc provided minimum O2 flow rate

#### Venturi masks

• Most suitable for controlled O2 in COPD

 Also if RR > 30 Lpm with very high inspiratory flow rate

#### Nasal Cannulae

• Low to medium O2 concentration

•  $1 - 4 \text{ Lpm} = 24\% - 40\% \text{ O}_2$ 

Breathing pattern dependent
 thus, monitor oximetry

# Nasal cannulae vs Simple face mask

- Comparable efficacy to deliver 02 around 40%
- NC mm appropriate for low concentration O2 cf. simple mask
- NC better than venturi to achieve longer periods > 90% saturation

### Nasal cannulae v face mask

- Advantages
  - Comfort
  - Adjustable flow gives wide oxygen dose range
  - Patient preference
  - No claustrophobic sensation
  - Not taken off to eat or speak
  - Less affected by movement of the face
  - Less inspiratory resistance than simple face masks
  - No risk of rebreathing of Carbon dioxide
  - cheaper

#### Nasal cannulae v face mask

- Disadvantages
  - May cause nasal irritation or soreness
  - Will not work if nose is severely congested or blocked

### Humidification

- Not required for low flow O<sub>2</sub>
- Possibly required for high flow O<sub>2</sub> >24 hrs
- Needed for tracheotomy mask
- May be of value to assist clearance of secretions

### Humidification devices

Bubble humidification

• No benefit re:comfort

• Infection risk

# Large volume nebulisation based humidifier

#### • Used in patients with viscid sputum



#### Nebulisation

• Asthma: Use O<sub>2</sub>

• COPD: Use compressed air or electrical nebuliser